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Abstract. An analysis is made of reality conditions within the context of non-commutative geometry. We
show that if a covariant derivative satisfies a given left Leibniz rule then a right Leibniz rule fixes the
reality condition for the covariant derivative itself. We show also that the map which determines the right
Leibniz rule must satisfy the braid equation if the extension of the covariant derivative to tensor products
is to satisfy the reality condition.

1 Introduction and motivation

In non-commutative geometry (or algebra), reality condi-
tions are not as natural as they can be in the commutative
case; the product of two hermitian elements is no longer
necessarily hermitian. The product of two hermitian dif-
ferential forms is also not necessarily hermitian. It is our
purpose here to analyze this problem in some detail. If the
reality condition is to be extended to a covariant deriva-
tive then we shall show that there is a close correspon-
dence between the existence of the star structure on the
tensor product and the existence of a left and right Leibniz
rule fulfilling an additional constraint which comes from
the condition that the star structure be an involution. We
shall show also that the matrix which determines the re-
ality condition must satisfy the Yang–Baxter condition if
the extension of the covariant derivative to tensor prod-
ucts is to be well defined. This is equivalent to the braid
condition for the map σ which determines the right Leib-
niz rule. This is necessary in discussing the reality of the
curvature form. We shall find in fact that the map σ plays
a role completely analogous to that of the braiding map
in the pioneering work of Woronowicz [1] in defining real
calculi on quantum groups.

There is not as yet a completely satisfactory defini-
tion of either a linear connection or a metric within the
context of non-commutative geometry but there are defi-
nitions which seem to work in certain cases. In the present
article we chose the definition of a linear connection as a
covariant derivative, a definition which is an adaptation
[2] of the definition proposed by Koszul [3] and Connes
[4] of a general connection. We shall use therefore the ex-
pression “connection” and “covariant derivative” synony-
mously. We refer to a recent book by one of the present
authors [5] for a list of some other examples and references
to alternative definitions. More details of one alternative
version can be found, for example, in the book by Landi

[6]. We refer to this book also for an alternative defini-
tion [4] of a metric. For a general introduction to more
mathematical aspects of the subject we refer to the book
by Connes [4]. We find our results first in the context of
a particular version of non-commutative geometry which
can be considered as a non-commutative extension of the
moving-frame formalism of Cartan. This implies that we
suppose that the module of 1-forms is free as a right or left
module. As a bimodule it will always be projective with
one generator, the generalized “Dirac operator”. More de-
tails can be found elsewhere [2,5]. Then we rederive the
results in a more general context, without using the frame
formalism. In the second section we review briefly what we
mean by the frame formalism and we recall the particular
definition of a covariant derivative which we use. In the
third section we discuss the reality condition. We describe
here the relation between the map which determines the
right Leibniz rule and the map which determines the re-
ality condition. The last section contains the formulation
of the main results without the frame formalism and a
generalization to higher wedge and tensor powers.

2 The frame formalism

The starting point is a non-commutative associative unital
algebra A and over A a differential calculus [7,8] Ω∗(A).
We recall that there is a canonical way of constructing a
complete differential calculus from the left and right mod-
ule structure of the A-module of 1-forms Ω1(A), a con-
struction which yields the largest calculus which is consis-
tent with the relations which determine the algebra [9,10].
In particular this determines the A-bimodule structure of
all the Ωk(A). We shall use this construction and we shall
restrict our attention to the case where the module is free
of rank n as a left or right module.
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If Ω1(A) possesses a special basis θa, 1 ≤ a ≤ n, which
commutes with the elements f of the algebra,

[f, θa] = 0, (2.1)

then some of the assumptions we make can be more easily
formulated. We therefore start with this case. The exis-
tence of this basis implies that in the commutative limit
the associated manifold must be parallelizable. We shall
refer to the θa as a “frame” or “Stehbein”. The integer n
plays the role of “dimension”; it can be greater than the
dimension of the limit manifold but in this case the frame
will have a singular limit. Calculations will be even sim-
pler if in addition [11,10] the basis {θa} is dual to a set of
inner derivations ea = adλa for some λa ∈ A. This means
that the differential is given by the expression

df = eafθ
a = [λa, f ]θa. (2.2)

One can rewrite this equation as

df = −[θ, f ], (2.3)

if one introduces [4] the “Dirac operator”

θ = −λaθ
a. (2.4)

The wedge product between frame elements can be written

θaθb = P ab
cdθ

cθd, (2.5)

where we expect the matrix P to go to the antisymmetric
projector in the commutative limit. Because of (2.1), the
P ab

cd belong to the center Z(A) of A, in particular will be
complex numbers if the latter is trivial. It can be shown
[10,12] that the λa must satisfy a quadratic consistency
condition. In the simplest case the terms of degree 0,1
vanish and the condition reads

λcλdP
cd

ab = 0. (2.6)

We propose [2] as definition of a linear connection a map
[3,4,13]

Ω1(A) D−→ Ω1(A)⊗A Ω1(A) (2.7)

which satisfies both a left Leibniz rule

D(fξ) = df ⊗ ξ + fDξ (2.8)

and a right Leibniz rule

D(ξf) = σ(ξ ⊗ df) + (Dξ)f (2.9)

for arbitrary f ∈ A and ξ ∈ Ω1(A). We have here intro-
duced a generalized permutation

Ω1(A)⊗A Ω1(A) σ−→ Ω1(A)⊗A Ω1(A) (2.10)

in order to define a right Leibniz rule which is consistent
with the left one. It is necessarily [14,5] A-bilinear:

σ(fξ ⊗ ηg) = fσ(ξ ⊗ η)g (2.11)

for arbitrary f, g ∈ A. A linear connection is therefore a
couple (D, σ). It can be shown [2] that a necessary as well
as sufficient condition for torsion to be right linear is that
σ satisfy the consistency condition

π ◦ (σ + 1) = 0. (2.12)

The map (2.7) has a natural extension [3]

Ω∗(A) D−→ Ω∗(A)⊗A Ω1(A) (2.13)

to the entire tensor algebra given by a graded Leibniz rule.
This general formalism can be applied in particular

to differential calculi with a frame. Since Ω1(A) is a free
module the map σ can be defined by its action on the
basis elements:

σ(θa ⊗ θb) = Sab
cdθ

c ⊗ θd. (2.14)

By the sequence of identities

fSab
cdθ

c ⊗ θd = σ(fθa ⊗ θb) = σ(θa ⊗ θbf)

= Sab
cdfθ

c ⊗ θd (2.15)

we conclude that the coefficients Sab
cd must lie in Z(A).

A covariant derivative is completely specified once its
action is assigned on the basis elements:

Dθa = −ωa
bcθ

b ⊗ θc. (2.16)

The coefficients here are elements of the algebra. The
extension of (2.16) to an arbitrary element ξ ∈ Ω1(A)
is given by the two Leibniz rules (2.8), (2.9). This im-
plies a condition on the coefficients ωa

bc, which is eas-
ier to express if the basis is a frame. We have then, for
ξ = ξaθ

a = θaξa,

Dξ = dξa ⊗ θa − ξaω
a

bcθ
b ⊗ θc

as well as

Dξ = σ(θa ⊗ dξa)− ωa
bcξaθ

b ⊗ θc.

These two expressions must be equal as a consistency con-
ditions. The torsion 2-form is defined as usual as

Θa = dθa − π ◦Dθa. (2.17)

In the case considered in formula (2.6) it is easy to verify
[2] that

D(0)ξ = −θ ⊗ ξ + σ(ξ ⊗ θ) (2.18)

defines a torsion-free covariant derivative. This will be a
good example to use as a test case.

We shall define a metric as a A-bilinear map [14]

Ω1(A)⊗A Ω1(A) g−→ A.

For any basis of 1-forms {θa}, g is completely determined
by the matrix elements

g(θa ⊗ θb) = gab, (2.19)
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which are elements ofA. If in particular we choose a frame,
then by the sequence of identities

fgab = g(fθa ⊗ θb) = g(θa ⊗ θbf) = gabf (2.20)

one concludes that the coefficients gab must lie in Z(A).
We define the metric to be symmetric if

g ◦ σ ∝ g (2.21)

with a proportionality factor equal to 1 if σ is an involu-
tion. This is a natural generalization of the situation in
ordinary differential geometry where symmetry is respect
to the flip which defines the forms. If gab = gba then by a
linear transformation of the original λa one can make gab

the components of the Euclidean (or Minkowski) metric
in dimension n. In general it follows from (2.21) that the
components of the metric will not be symmetric in the
ordinary sense of the word.

We shall say [14] that the covariant derivative (2.16)
is compatible with the metric if and only if the condition

ωa
bc + ωcd

eSad
be = 0 (2.22)

holds. This is a straightforward “twisted” form of the
usual condition that gadω

d
bc be antisymmetric in the two

indices a and c which in turn expresses the fact that for
fixed b the ωa

bc form a representation of the Lie algebra of
the Euclidean group SO(n) (or the Lorentz group). Under
the assumption (2.6) the condition that (2.16) be metric
compatible can be written [10] as

Sae
dfg

fgSbc
eg = gabδc

d. (2.23)

Introduce the standard notation σ12 = σ ⊗ 1 and σ23 =
1 ⊗ σ to extend to the tensor product of three copies of
a module any operator σ defined on respectively the first
two or last two copies. Then there is a natural continuation
of the map (2.7) to the tensor product Ω1(A) ⊗A Ω1(A)
given by the map

D2(ξ ⊗ η) = Dξ ⊗ η + σ12(ξ ⊗Dη). (2.24)

For the covariant derivative (2.18) it is immediate to show
that

D(0)2(ξ ⊗ η) = −θ ⊗ ξ ⊗ η + σ12σ23(ξ ⊗ η ⊗ θ). (2.25)

The map D2 ◦D has no particularly interesting properties
but if one introduces the notation π12 = π ⊗ 1 then by
analogy with the commutative case one can set

D2 = π12 ◦D2 ◦ D (2.26)

and formally define the curvature as the map

Curv : Ω1(A) −→ Ω2(A)⊗A Ω1(A) (2.27)

given by Curv = D2. This coincides with the composition
of the first two maps of the series of (2.13). Because of the
condition (2.12) Curv is left linear. It can be written in
terms of the frame as

Curv(θa) = −1
2
Ra

bcdθ
cθd ⊗ θb (2.28)

Similarly one can define a Ricci map

Ric(θa) =
1
2
Ra

bcdθ
cg(θd ⊗ θb). (2.29)

It is given by
Ric(θa) = Ra

bθ
b. (2.30)

The above definition of curvature is not satisfactory in the
non-commutative case [2]. For example, from (2.28) one
sees that Curv can only be right linear if Ra

bcd ∈ Z(A).
The curvature Curv(0) of the covariant derivative D(0)

defined in (2.18) can be readily calculated. One finds after
a short calculation that it is given by the expression

Curv(0)(θa) = θ2 ⊗ θa+ π12σ12σ23σ12(θa ⊗ θ ⊗ θ). (2.31)

If ξ = ξaθ
a is a general 1-form then since Curv is left linear

one can write

Curv(0)(ξ) = ξaθ
2 ⊗ θa+ π12σ12σ23σ12(ξ ⊗ θ ⊗ θ). (2.32)

The lack of right linearity of Curv is particularly evident
in this last formula.

3 The involution

Suppose now that A is a algebra with an hermitian adjoint
f �→ f∗ and with a compatible differential calculus. It
means that there is an antilinear map 1 of Ω1(A) into
itself such that, for any f, h ∈ A and ξ ∈ Ω1(A),

1(df) ≡ (df)∗ = df∗ (3.1)

and
1(fξh) ≡ (fξh)∗ = h∗ξ∗f∗. (3.2)

This amounts to the notion of a ∗-calculus originally in-
troduced by Woronowicz in [1]. Some differential calculi
satisfy this condition (see e.g. [1,16,17,11,18]), but not all
(see e.g. [19]). If there is a Dirac operator θ then it follows
necessarily that it is an antihermitian 1-form:

θ∗ = −θ. (3.3)

If a frame exists, ons can apply the involution to (2.1).
Using the relation (3.2) we conclude that there must exist
coefficients Ca

b ∈ Z(A) such that
(θa)∗ = Ca

b θ
b. (3.4)

Since the adjoint is an involution then necessarily (Ca
c )

∗Cc
b

= δa
b . This is not to be confused with the condition

gcd(Cc
a)

∗Cd
b = gab that C be unitary. This is why one can-

not always transform an arbitrary frame into a real frame.
We shall be mainly concerned with the case in which one
can impose the condition

(θa)∗ = θa. (3.5)

Equations (2.2), (3.1) and (3.5) imply then that for the
dual inner derivations

(eaf
∗)∗ = eaf, (3.6)
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which in turn implies that the λa are antihermitian. Con-
versely of course, if the λa are chosen antihermitian then
the condition (3.5) is necessarily satisfied.

We shall extend the involution to a map

n :
n⊗
1

Ω1(A) →
n⊗
1

Ω1(A), (3.7)

of tensor powers of Ω1(A) into themselves for n > 1. Con-
sider first the case n = 2. This map would in turn allow
one to extend the involution ı1 ≡ 1 of Ω1(A) to an invo-
lution ı2 of Ω2(A) by requiring that it be compatible with
the action of the product:

ı2 ◦ π = π ◦ 2. (3.8)

Our main requirement is the reality condition

Dξ∗ = (Dξ)∗ (3.9)

on the connection and on 2, a condition which can be
rewritten also in the form

D ◦ 1 = 2 ◦D. (3.10)

This must be consistent with the Leibniz rules (2.8) and
(2.9). From the equalities

(D(fξ))∗ = D((fξ)∗) = D(ξ∗f∗) (3.11)

one finds the condition

(df ⊗ ξ)∗ + (fDξ)∗ = σ(ξ∗ ⊗ df∗) + (Dξ)∗f∗. (3.12)

The latter will be satisfied if we define the involution in
general by (see also [14,20])

(ξ ⊗ η)∗ = σ(η∗ ⊗ ξ∗). (3.13)

It follows immediately that the first terms on either side of
(3.12) are equal, whereas the equality of the second terms
is a direct consequence of (3.13) and of the A-bilinearity
of σ, that for any f, h ∈ A and ξ, η ∈ Ω1(A)

(fξ ⊗ ηh)∗ = h∗(ξ ⊗ η)∗f∗. (3.14)

From (3.13) we see that a change in σ implies a change
in the definition of an hermitian tensor. Thus, there is an
intimate connection between the reality condition and the
right Leibniz rule and it follows that 2 is also restricted by
the condition (2.12). Equation (3.13) can be also read from
right to left as a definition of the right Leibniz rule in terms
of the hermitian structure. Note also that the involution
(3.13) has the ordinary flip as a commutative limit, since
in this limit σ become the ordinary flip. (Therefore it is
related to, but should not be confused with, the particular
involution on Ω1(A)⊗ Ω1(A) introduced by Woronowicz
[1] in the proof of his Theorem3.4.)

If in (3.13) we choose ξ = θa and η = θb, then we find
that

(θa ⊗ θb)∗ ≡ 2(θa ⊗ θb) = Jab
cdθ

c ⊗ θd, (3.15)

where the coefficients Jab
cd ∈ Z(A) are given by

Jab
cd = Cb

eC
a
fS

ef
cd. (3.16)

If the frame is real this becomes the equality

Jab
cd = Sba

cd. (3.17)

The condition that the star operation be an involution
places a further constraint on the map σ:

(σ(η∗ ⊗ ξ∗))∗ = (ξ ⊗ η). (3.18)

In terms of the frame this gives the condition

(Jab
cd)∗Jcd

ef = δa
e δ

b
f , (3.19)

which for a real frame yields in turn the condition

(Sba
dc)∗ = (S−1)ab

cd. (3.20)

What we have required so far was necessary, but not suf-
ficient to make the connection real. From (2.16) written
in terms of the frame the reality condition (3.10) to be
fulfilled now reduces to the constraint

Ca
dω

d
bc = (ωa

de)∗Jde
bc. (3.21)

In particular, for a real frame this is equivalent to the
constraint

ωa
bc(Scb

de)∗ = (ωa
de)∗. (3.22)

Using (3.13), (3.18) and (3.3) one verifies immediately that
the connection (2.18) is real.

We would like now to use 2 to define the involution on
the algebra of 2-forms through the standard [1] projection
procedure (3.8). Using (2.12), we find that for any ξ, η ∈
Ω1(A) we must have

(ξη)∗ = π ◦ σ(η∗ ⊗ ξ∗) = −η∗ξ∗. (3.23)

For an hermitian calculus this is automatically consistent
with the product since this as well as the structure of the
algebra Ω∗(A) is fully encoded in the module structure of
Ω1(A). In terms of the frame this implies that the com-
mutation relations (2.5)

θaθb = P ab
cdθ

cθd

are consistent with (3.23). By applying ı2 to both sides
one can check that this is equivalent to the condition

P ab
cd = (Ca

e )
∗(Cb

f )
∗(P fe

gh)∗Cg
c C

h
d , (3.24)

which for a real frame simplifies to

P ab
cd = (P ba

dc)∗. (3.25)

From (3.23) it follows that the exterior derivative is real
also on 1-forms. This is immediate if d can be realized as an
anticommutator with θ, because of (3.3). More generally
it follows from the sequence of identities

(d(fdg))∗ = (dfdg)∗ = −(dg)∗(df)∗ = −dg∗df∗

= d((dg∗)f∗) = d(fdg)∗. (3.26)
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We shall say that the metric is real if its action commutes
with the corresponding involution:

g((ξ ⊗ η)∗) = (g(ξ ⊗ η))∗. (3.27)

In terms of the frame this condition puts the further con-
straints

Sab
cdg

cd = (gba)∗ (3.28)

on the matrix of coefficients gab and on Sab
cd.

We shall now consider third tensor powers of Ω1(A).
In order for the linear curvature associated to D to be real
we must require that the extension of the involution to the
tensor product of three elements of Ω1(A) be such that

π12 ◦D2(ξ ⊗ η)∗ = (π12 ◦D2(ξ ⊗ η))∗ . (3.29)

We shall impose a stronger condition. We shall require
that D2 be real:

D2(ξ ⊗ η)∗ = (D2(ξ ⊗ η))∗. (3.30)

This can be rewritten also in the form

D2 ◦ 2 = 3 ◦D2. (3.31)

Again, this must be consistent with the Leibniz rules (2.8)
and (2.9). Replacing ξ by fξ in (3.30) and using (2.24) and
(3.13) we find that

σ12σ23σ12(η∗ ⊗ ξ∗ ⊗ df∗) + (D2(ξ ⊗ η))∗ f∗

= (df ⊗ ξ ⊗ η)∗ + (fD2(ξ ⊗ η))∗ . (3.32)

In order to fulfill this condition we are led to the equation

(ξ⊗η⊗ζ)∗ ≡ 3(ξ⊗η⊗ζ) = σ12σ23σ12(ζ∗⊗η∗⊗ξ∗). (3.33)

The second terms on either side of (3.32) are manifestly
equal, whereas the first terms are equal as a direct con-
sequence of (3.33). The condition that the map 3 be an
involution places a further constraint on the map σ. In
order to make this explicit we first assume for simplicity
that there exists a real frame θa. It follows then that

(θa ⊗ θb ⊗ θc)∗ = σ12σ23σ12(θc ⊗ θb ⊗ θb) (3.34)

= (S12S23S12)cba
defθ

d ⊗ θe ⊗ θf ,

where

(S12)abc
def = Sab

deδ
c
f , (S23)abc

def = δa
dS

bc
ef ,

and the constraint reads
(
(S12S23S12)cba

def

)∗
(S12S23S12)fed

pqr = δa
pδ

b
qδ

c
r. (3.35)

Using (3.20) it is easy to check that this is equivalent to
the braid equations

S12S23S12 = S23S12S23 (3.36)

for the matrix S and

σ12σ23σ12 = σ23σ12σ23 (3.37)

for the map σ. We are thus led to postulate that σ satisfies
also (3.37). As we shall show in next section, this will make
3 an involution in the general case, even if there is no real
frame. In terms of the matrix Jab

cd (3.36) becomes the
Yang–Baxter equation

J12J13J23 = J23J13J12, (3.38)

which is the correct expression of (3.37) in the frame for-
malism also if the frame is not real.

Having defined a consistent involution 3 by (3.33), we
now look for sufficient conditions for D2 to fulfill (3.30).
Again, we first assume for simplicity that there exists a
real frame θa. In terms of the frame, from the definition
(2.24) of D2 one has

D2(θa ⊗ θb) = −(ωa
pqδ

b
r +Sac

pqω
b
cr)θp ⊗ θq ⊗ θr, (3.39)

and the condition (3.30) becomes

Sba
pq(ωp

deδ
q
f + Spr

deω
q
rf ) = (3.40)

(
(ωa

pq)∗δb
r + (S

as
pq)∗(ωb

sr)∗
)
(S12S23S12)rqp

def .

Using (3.22), (3.36) and (3.20) it is easy to verify that the
latter is equivalent to the equation

Sba
peω

p
cd+Sba

pqS
pr

cdω
q
re = Spa

deω
b
cp+Sbq

cpS
pr

deω
a

qr.
(3.41)

The latter can be rewritten more abstractly and concisely
in the form

D2 ◦ σ = σ23 ◦D2. (3.42)

In fact, the most general element in Ω1(A) ⊗ Ω1(A) can
be written in the form fabθ

a ⊗ θb. Applying (3.42) to this
expression and using (3.39) and (2.8) one finds

D2
(
σ(fabθ

b ⊗ θa)
) − σ23 ◦ (

D2(fabθ
b ⊗ θa)

)

= Sba
pqD2(fabθ

p ⊗ θq)

−dfab ⊗ σ(θb ⊗ θa)

−fab(ωb
cpδ

a
r + Sbq

cpω
a

qr)σ23(θc ⊗ θp ⊗ θr)

= fab

(
Sba

pq(ωp
cdδ

q
e + Spr

cdω
q
re)

−(ωb
cpδ

a
r + Sbq

cpω
a

qr)Spr
de

)
θc ⊗ θd ⊗ θe.

The right-hand side of this equation vanishes if and only
if (3.41) holds. To summarize, then, besides (3.37) and
(3.18) we are led to postulate that σ fulfills also (3.42). As
we shall show in next section, this will make D2 real in the
general case, even if there is no real frame. Using (2.25)
and (3.37) it is easy to check that the covariant derivative
(2.18) satisfies (3.42).

To define the involution on 3-forms we apply π23 ◦ π12
to (3.33). Using repeatedly (2.12) and the associativity
π23 ◦ π12 = π12 ◦ π23 of the wedge product we find that

(ξηζ)∗ ≡ π23 ◦ π12 ◦ 3(ξ ⊗ η ⊗ ζ) = −ζ∗η∗ξ∗

= ζ∗(ξη)∗ = (ηζ)∗ξ∗. (3.43)

Moreover, reasoning as before, one finds that the exterior
derivative is real also on 2-forms. Note that our construc-
tion is based on the existence of a A-bilinear map σ fulfill-
ing the braid condition (3.37) and the constraint (3.18).
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It is remarkable that this is exactly what was used by
Woronowicz [1] to define real calculi on quantum groups,
although we are here in a rather different context. Because
of (3.37), σ acts like a braiding in Hopf algebra theory.

We conclude this section by considering some examples
where the above construction applies. If in particular the
frame is real and P ab

cd is given by

P ab
cd =

1
2
(δa

c δ
b
d − δa

dδ
b
c) (3.44)

we can choose σ to be the ordinary flip and 2 the identity.
As explicit examples where P ab

cd are of the form (3.44),
and the differential calculi are based on real derivations,
we mention the calculi based on lie algebras of derivations
of matrix algebras [11,18] and the Jordanian deformation
[17,21] of the plane.

On real manifolds one considers usually only real
derivations and real forms but it is however often of inter-
est on even-dimensional manifolds to introduce derivations
which are not real and use them to define an involution on
the module of 1-forms known as an almost-complex struc-
ture. We have given the general expression which the ex-
tension of the involution must have to Ω2(A) as well as to
Ω1(A)⊗Ω1(A); this again parallels the procedure which is
used in ordinary geometry. The involution, we have seen,
depends on the form of the projector π, notably on its
coefficients P ab

cd. The calculi on the quantum Euclidean
spaces [22] can be shown [23] to be based on derivations
which do not satisfy the condition (3.6). There is in these
cases no satisfactory involution on the algebra of forms,
at least none which respects the action of the respective
quantum groups.

Reality conditions can be introduced also on calculi
which neither are based on derivations nor have a frame.
We would like to mention also a very simple example, the
calculus known as the Connes–Lott model [24] which is
based on the algebra of 3×3 matrices. The 1-forms in this
example can be identified as matrices and the involution
is defined to be the ordinary involution on matrices. This
model is of interest not only because it furnishes an ex-
ample of an involution on a calculus which is not based
on derivations but because it is the simplest example of
a general procedure [4,25] which allows one to introduce
involutions on differential calculi over algebras of opera-
tors, a procedure which is based on an operator used in
the theory of von Neumann algebras known as the mod-
ular conjugation operator and which is generally denoted
also by J . There have been several [26,27] recent expo-
sitions of this operator within the present context. The
discussion we have given is in principle valid for arbitrary
associative algebras, not necessarily operator algebras, but
if one is considering an algebra which is represented as an
operator algebra and with a differential calculus defined
by a generalized Dirac operator [4,25], and with a frame
as we have defined it then the involution induced by the
modular conjugation operator on the frame would satisfy
all of the conditions we have described for the involution
 on 1-forms and each representation would define a dif-
ferent, in general inequivalent, one. We recall that there
is in general on a manifold no unique way of defining an

almost-complex structure. We cannot discuss this in fur-
ther detail since no concrete examples are known except
for the trivial matrix algebras.

4 Higher tensor and wedge powers

In the present section we rederive the main results of the
previous section and generalize them to higher tensor and
wedge powers. Apart from the basic assumptions (3.1) and
(3.2) that we are using a real calculus, and (3.10) and
(3.18) that the covariant derivative of a 1-form be consis-
tent with the involution, we shall use the braid condition
(3.37) as well as a consistency condition (3.42) on the ex-
tension of the covariant derivative to tensor products. We
do not assume the existence of a frame.

Just as we have in (2.24) defined D2 we can introduce
a set Dn of covariant derivatives

Dn :
n⊗
1

Ω1(A) −→
n+1⊗

1

Ω1(A) (4.1)

for arbitrary integer n by using σ to place the operator D
in its natural position to the left. For instance,

D3 = (D⊗ 1⊗ 1 + σ12(1⊗D⊗ 1) + σ12σ23(1⊗ 1⊗ D))
(4.2)

These Dn will also be real in the sense that

Dn ◦ n = n+1 ◦Dn (4.3)

where the n are the natural generalizations of 2 and 3.
For instance, 4 is defined by

(ξ ⊗ η ⊗ ζ ⊗ ω)∗ ≡ 4(ξ ⊗ η ⊗ ζ ⊗ ω)
= σ12σ23σ12σ34σ23σ12(ω∗ ⊗ ζ∗ ⊗ η∗ ⊗ ξ∗). (4.4)

The general rule to construct n is the following. Let ε
denote the “flip” or the “permutator” of two objects, ε(ξ⊗
η) = η ⊗ ξ, and more generally let εn denote the inverse-
order permutator of n objects. For instance, the action of
ε3 is given by

ε3(ζ ⊗ η ⊗ ξ) = ξ ⊗ η ⊗ ζ. (4.5)

The maps ε, εn are C-bilinear but not A-bilinear, and are
involutive. One can decompose εn as a product of εi(i+1).
One finds for n = 3

ε3 = ε12ε23ε12 = ε23ε12ε23. (4.6)

The second equality expresses the fact that ε fulfills the
braid equation. In a more abstract but compact notation
the definitions (3.13), (3.33) and (4.4) can be written in
the form

2 = σ"2, (4.7)
3 = σ12σ23σ12"3, (4.8)
4 = σ12σ23σ12σ34σ23σ12"4. (4.9)
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We have here defined the involution on the 1-forms as 1,
and

"n = (1 ⊗ . . . ⊗ 1︸ ︷︷ ︸
n times

)εn. (4.10)

The "n is clearly an involution, since εn commutes with the
tensor product of the 1’s. The products of σ’s appearing
in the definitions of 3, 4 are obtained from the decom-
positions of ε3, ε4 by replacing each εi(i+1) by σi(i+1). In
this way, 3, 4 have the correct classical limit, since in this
limit σ become the ordinary flip ε. In the same way as dif-
ferent equivalent decompositions of ε3, ε4 are possible, so
different products of σ factors in (4.8) and (4.9) are al-
lowed. However there is no ambiguity because they are all
equal, once (3.37) is fulfilled. The same rules described for
n = 3, 4 should be used to define n for n > 4.

The definition of n can be given also some equivalent
recursive form which will be useful for the proofs below,
namely

3 = σ12σ23ε23ε12(1 ⊗ 2), (4.11)
4 = σ12σ23σ34ε34ε23ε12(1 ⊗ 3), (4.12)
= σ23σ34σ12σ23ε23ε12ε34ε23(2 ⊗ 2), (4.13)

and so forth to higher orders. Again, these definitions are
unambiguous because of the braid equation (3.37).

Now we wish to show that, if the braid equation is
fulfilled and 2 is an involution, that is, (3.18) is satisfied,
then n is also an involution for n > 2. Note that the
constraint (3.18) in the more abstract notation introduced
above becomes

2 = −1
2 = ε ◦ (1 ⊗ 1) ◦ σ−1. (4.14)

As a first step one checks that for i = 1, · · · , n − 1

σi(i+1)"n = "n σ−1
(n−i)(n+1−i). (4.15)

The latter relation can be proved recursively. We show in
particular how from the relation with n = 2 follows the
relation with n = 3:

σ12"3
(4.5)
= σ12(1 ⊗ 1 ⊗ 1)ε12ε23ε12σ23σ

−1
23

(4.7)
= (2 ⊗ 1)ε23ε12σ23σ

−1
23

= (2σ ⊗ 1)ε23ε12σ−1
23

(4.14)
= (1 ⊗ 1 ⊗ 1)ε12ε23ε12σ−1

23
(4.5)
= "3σ

−1
23 .

(4.16)

Now it is immediate to show that n is an involution.
Again, we explicitly reconsider the case n = 3:

(3)2 = σ12σ23σ12"3σ23σ12σ23"3
(4.16)
= "3σ

−1
23 σ−1

12 σ−1
23 σ23σ12σ23"3

= 1.

In order to prove (4.3) it is useful to prove first a direct
consequence of relation (3.42):

Dn ◦ σ(i−1)i = σi(i+1) ◦Dn. (4.17)

The recursive proof is straightforward. For instance,

D3σ23 = [D⊗ 1⊗ 1 + σ12(1⊗D2)]σ23

(3.42)
= σ34(D⊗ 1⊗ 1) + σ12σ34(1⊗D2)
= σ34D3.

Now (4.3) can be proved recursively. For instance,

D33
(4.11)
= D3σ12σ23ε23ε12(1 ⊗ 2)

(4.17)
= σ23σ34D3ε23ε12(1 ⊗ 2)

(4.2)
= σ23σ34[D2 ⊗ 1
+ σ12σ23(1⊗ 1⊗D)]ε23ε12(1 ⊗ 2)
= σ23σ34[ε34ε23ε12(1⊗D2)
+ σ12σ23ε23ε12ε34ε23(D⊗ 1⊗ 1)](1 ⊗ 2)

(3.31)
= σ23σ34[ε34ε23ε12(1 ⊗ 3D2)
+ σ12σ23ε23ε12ε34ε23(2D⊗ 2)]

(4.12),(4.13)
= σ−1

12 4(1⊗D2) + 4(D⊗ 1⊗ 1)
= 4[σ12(1⊗D2) + (D⊗ 1⊗ 1)]

(4.2)
= 4D3. (4.18)

For the second-last equality we have used the relation
σ−1

12 4 = 4σ12, which can be easily proven using (3.37)
and (4.15).

The map k allows one to extend the involution also
to k-forms by requiring its compatibility with the action
of k-form projectors:

π12◦π23◦· · ·◦π(k−1)k◦k = ∗◦π12◦π23◦· · ·◦π(k−1)k. (4.19)

For arbitrary αp ∈ Ωp(A), αq ∈ Ωq(A) one finds the
general rule

(αpαq)∗ = (−)pqα∗
qα

∗
p (4.20)

which generalizes (3.23) and (3.43). Reasoning as in the
previous section one finds that d is real on all of Ω∗(A).

For further developments it is convenient to extend
the braiding σ functorially to tensor powers of Ω1(A) or
of Ω∗(A) (for an introduction to braidings we refer to
Majid [28,29]). This is possible because of (3.37). In this
framework, the bilinear map σ can be naturally extended
first to higher tensor powers of Ω1(A),
σ : (Ω1 ⊗ . . . ⊗ Ω1

︸ ︷︷ ︸
p times

)⊗ (Ω1 ⊗ . . . ⊗ Ω1
︸ ︷︷ ︸

k times

) → Ω1 ⊗ . . . ⊗ Ω1
︸ ︷︷ ︸
p+ k times

.

(4.21)
This extension can be found by iteratively applying the
rules

σ ((ξ ⊗ η)⊗ ζ) = σ12σ23(ξ ⊗ η ⊗ ζ),
σ (ξ ⊗ (η ⊗ ζ)) = σ23σ12(ξ ⊗ η ⊗ ζ).

(4.22)

Here ξ, η, ζ are elements of three arbitrary tensor powers
of Ω1(A). It is easy to show that there is no ambiguity
in the iterated definitions, and that the extended map
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still satisfies the braid equation (3.37). These are general
properties of a braiding.

Thereafter, by applying p+k−2 times the projector π
to the previous equation, so as to transform the relevant
tensor products into wedge products, σ can be extended
also as a map

σ : Ωp(A)⊗ Ωk(A) → Ωk(A)⊗ Ωp(A). (4.23)

For instance, we shall define σ on Ω2 ⊗ Ω1 and Ω1 ⊗ Ω2

respectively through

σ(ξη ⊗ ζ) = π23σ ((ξ ⊗ η)⊗ ζ) ,
σ(ξ ⊗ ηζ) = π12σ (ξ ⊗ (η ⊗ ζ)) .

(4.24)

Under suitable assumptions on π, the extended σ still sat-
isfies the braid equation (3.37). It follows that the same
formulae presented above in this section can be used to
extend the involutions n to tensor powers of higher de-
gree forms in a compatible way with the action of π, that
is, in such a way that 2 ◦ π12 = π12 ◦ 3, and so forth.
Finally, also the covariant derivatives Dn can be extended
to tensor powers of higher degree forms in such a way that
(4.3) is still satisfied. These results will be shown in detail
elsewhere.
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